skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "CAIS, BRYDEN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate a novel geometric Iwasawa theory for$${\mathbf Z}_p$$-extensions of function fields over a perfect fieldkof characteristic$$p>0$$by replacing the usual study ofp-torsion in class groups with the study ofp-torsion class groupschemes. That is, if$$\cdots \to X_2 \to X_1 \to X_0$$is the tower of curves overkassociated with a$${\mathbf Z}_p$$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of thep-torsion group scheme in the Jacobian of$$X_n$$as$$n\rightarrow \infty $$. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of$$X_n$$equipped with natural actions of Frobenius and of the Cartier operatorV. We formulate and test a number of conjectures which predict striking regularity in the$$k[V]$$-module structure of the space$$M_n:=H^0(X_n, \Omega ^1_{X_n/k})$$of global regular differential forms as$$n\rightarrow \infty .$$For example, for each tower in a basic class of$${\mathbf Z}_p$$-towers, we conjecture that the dimension of the kernel of$$V^r$$on$$M_n$$is given by$$a_r p^{2n} + \lambda _r n + c_r(n)$$for allnsufficiently large, where$$a_r, \lambda _r$$are rational constants and$$c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$$is a periodic function, depending onrand the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on$${\mathbf Z}_p$$-towers of curves, and we prove our conjectures in the case$$p=2$$and$$r=1$$. 
    more » « less